Multiple positive solutions of a semipositone singular boundary value problem on time scales

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Multiple Positive Solutions of a Singular Semipositone Integral Boundary Value Problem for Fractional q-Derivatives Equation

and Applied Analysis 3 The q-integral of a function f defined in the interval [0, b] is given by

متن کامل

Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales

and Applied Analysis 3 For the rest of the paper we need the following assumption: C3 0 < ∑m−2 i 1 αiφ1 ηi < 1. Lemma 2.2 see 1 . Assuming that (C2) and (C3) hold. Let y ∈ C ρ 0 , σ 1 . Then boundary value problem xΔ∇ t a t xΔ t b t x t y t 0, t ∈ 0, 1 T , x ( ρ 0 ) 0, x σ 1 m−2 ∑ i 1 αix ( ηi ) 2.3 is equivalent to integral equation

متن کامل

Multiple positive solutions to third-order three-point singular semipositone boundary value problem

By using a specially constructed cone and the fixed point index theory, this paper investigates the existence of multiple positive solutions for the third-order three-point singular semipositone BVP: x ′′′ (t) − λ f (t, x) = 0, t ∈ (0, 1); x(0) = x ′ (η) = x ′′ (1) = 0, where 1 2 < η < 1, the non-linear term f (t, x): (0, 1) × (0, +∞) → (−∞, +∞) is continuous and may be singular at t = 0, t = 1...

متن کامل

Positive Symmetric Solutions of Singular Semipositone Boundary Value Problems

Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2013

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2013-335